
Acta Cryst. (2008). A64, 537–548 doi:10.1107/S0108767308016826 537

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 8 January 2008

Accepted 3 June 2008

# 2008 International Union of Crystallography

Printed in Singapore – all rights reserved

Stacking and twin faults in close-packed crystal
structures: exact description of random faulting
statistics for the full range of faulting probabilities

E. Estevez-Rams,a,b* U. Welzel,b A. Pentón Madrigala and E. J. Mittemeijerb

aInstitute of Materials Research and Enginering (IMRE) – Physics Faculty, University of Havana, San

Lazaro y L. CP 10400 C., Habana, Cuba, and bMax Plank Institute for Metal Research,

Heisenbergstrasse 3, D-70569 Stuttgart, Germany. Correspondence e-mail: estevez@imre.oc.uh.cu

The classical model of independent random single deformation faults and twin

faulting in face-centered-cubic and hexagonal close packing is revisited. The

model is extended to account for the whole range of faulting probabilities. The

faulting process resulting in the final stacking sequences is described by several

equivalent computational models. The probability sequence tree is established.

Random faulting is described as a finite-state automaton machine. An

expression giving the percent of hexagonality from the faulting probabilities is

derived. The average sizes of the cubic and hexagonal domains are given as a

function of single deformation and twinning fault probabilities. An expression

for the probability of finding a given sequence within the complete stacking

arrangement is also derived. The probability P0ð�Þ of finding two layers of the

same type � layers apart is derived. It is shown that previous generalizations did

not account for all terms in the final probability expressions. The different

behaviors of the P0ð�Þ functions are discussed.

1. Introduction

Planar faulting in close-packed structures has been studied for

decades [see Welberry (1985) for a review of early work].

Independent random faulting is the simplest and most studied

model of planar disorder in close-packed arrangements

(Warren, 1969; Ustinov et al., 2001). In this model, different

types of defects have constant probabilities of occurrence

which are independent from each other. The constant char-

acter of the faulting probabilities and their mutual indepen-

dence implies that the stacking defects do not interact,

forming a sort of one-dimensional ‘ideal gas’. It is clear that

such a model of non-interacting defects can only be valid in

real materials for low densities of defects.

Close-packed three-dimensional structures are built from

two-dimensional layers with hexagonal symmetry piled up one

over the other. ‘Close packed’ implies that this type of struc-

ture attains the highest possible packing density (Conway &

Sloane, 1991). The face-centered-cubic (f.c.c.) and the hexa-

gonal close-packed (h.c.p.) structures are the two simplest and

best-known close-packed structures realized by a large

number of crystalline materials. In close-packed structures,

two types of faults are usually considered: deformation faults,

which are jogs in the otherwise perfect periodic sequence, and

twin faults, which cause reversions in the stacking ordering.

The probability for the occurrence of a deformation fault will

be denoted by �, while the probability for the occurrence of a

twin faulting will be denoted by �.

The perfectly ordered f.c.c. structure follows, along

the hexagonal [001] direction, an ABCABCAB . . . or

ACBACBA . . . sequence (Verma & Krishna, 1966). Each

letter, A, B or C, represents a different lateral displacement of

the layers perpendicular to the stacking direction. Instead of

using the letters ABC to code the stacking arrangement, less

redundant codings have been devised: the most common ones

are the Hägg code and the HK coding. In the former, a pair of

consecutive layers is given a plus (1) symbol if they form a

‘forward’ sequence AB, BC or CA, otherwise a minus sign (0)

is given. The other common binary coding is to consider the

nearest neighbors of any layer. If the layer above and below

the layer concerned are of the same type (e.g. ABA, CAC,

BCB etc.) a symbol h (0) is assigned, otherwise a letter k (1) is

assigned.

Patterson (1952) approached single-stacking faulting in

f.c.c. structures using a difference-equation procedure. Gevers

(1954) further extended the theory by considering a four-layer

interaction. This treatment followed previous work by Wilson

(1942), Hendrick & Teller (1942) and Jagodzinski (1949a,b).

Relevant contributions were also given by Kakinoki &

Komura (1952). In Gevers’ treatment, difference equations

are derived which describe the relation between faulting

probability parameters and the probability of finding a parti-

cular layer in the stack with a given displacement. Warren

(1969) developed the theory for a low density of faulting and

obtained an expression for the probability P0ð�Þ of finding

two layers, � layers apart, with the same perpendicular



displacement (i.e. A . . . A, B . . . B, C . . . C). P0ð�Þ is also

known as the probability correlation function. The treatment

by Warren has become the most used when dealing with

faulting in close-packed structures. Pandey & Krishna (1977),

analyzing SiC single crystals, solved Gevers’ equations without

a limitation on the density of faulting. Velterop et al. (2000)

lifted some of the restrictions in Warren’s treatment and

considered the influence of texture and nonuniform faulting

probabilities. Estevez-Rams, Leoni et al. (2003) demonstrated

that the Warren treatment can be considered as a particular

case of a more general proposition for the probability function

P0ð�Þ, from which the diffracted intensity can be calculated.

Recently, Tiwary & Pandey (2007a,b) have studied the

decaying behavior of the P0ð�Þ functions, obtaining analytical

expressions for the correlation length as a function of the

deformation- and twin-fault probabilities.

Although the random model for faulting is of limited

practical use, it may serve as a reference to which other models

and experimental results can be compared. From such a

comparison, information about the interaction of defects (i.e.

deviations from a random distribution) may be obtained. It

will also be shown in this work that the model leads to the

definition of the so-called correlation lengths and domain

sizes, which have a general validity beyond random faulting.

In this paper, the independent-probability random faulting

model will be explored, while in a future paper the implica-

tions for the diffraction profiles for the whole range of faulting

probabilities will be discussed. In the treatment that follows,

any restriction in the faulting probability will be lifted, while,

as in the existing restricted model, planar defects will be

considered to occur on only one plane or, in other words,

perpendicular to a unique crystallographic direction.

We start by describing the effect of deformation and twin

faults in a close-packed arrangement. The transition tree of

the stochastic process, allowing for any density of faulting, will

be built. The first derivation of the transition tree for a single

faulting model was probably given by Jagodzinski (1949b),

who, starting from an unfaulted hexagonal close-packed

structure, considered the probability of finding an h or k

environment in the stacking arrangement. Gevers (1954) and

Pandey & Krishna (1977) developed similar transition trees

but in terms of faulting parameters. The approach used in the

present paper for deriving the probability transition tree will

follow a similar logic but will consider the possible

simultaneous occurrence of deformation faults and twin

faulting.

A finite-state automaton (FSA) describing the stacking

process will be constructed. The description of the faulting as an

FSA is due to the work done on faulting by Varn & Canright

(2001), Varn (2001), Varn et al. (2002) and Varn & Crutchfield

(2004), although their reconstruction process will not be

followed. A nondeterministic stochastic machine will be used

to derive an expression for the probability of finding a given

sequence within the complete stacking arrangement in terms

of the faulting probabilities � and �. Similarly, an analytical

expression will be derived for the probability of finding within

the crystal stack a face-centered-cubic domain with L number

of layers. An analogous expression for finding a close-packed

hexagonal domain within the crystal stack will also be given.

Finally, an expression for P0ð�Þ will be constructed. P0ð�Þ
is essential in describing the effect of faulting on the diffrac-

tion pattern. A comparison with previous studies will explore

the validity of the different approximations made. The prob-

ability correlation function shows three different behaviors

depending on the faulting density. The loss of correlation as a

result of the planar faulting defines the correlation length of

the system.

2. The transition probability tree for independent
random faulting

For the case of the f.c.c. stacking, a single deformation fault

occurs everytime there is a jog in the perfect arrangement:

. . . A B C A j C A B C A . . .

A twin fault, on the other hand, reverses the original stacking

order:

. . . A B C A j C B A C B . . .

The independent random faulting model considers the

occurrence of any of the two defects to be independent events

with a fixed probability which, following Warren (1969), will

be denoted by � for deformation faults and � for twin faults.

For deformation faults the average distance between faults

is 1/� and, starting with a forward sequence, the probability

that after an A (B, C) layer there will be an unfaulted B (C, A)

layer will be given by � ¼ 1� �, while the probability of a

fault will be �. It is clear that � = 1
2 corresponds to the

maximum state of disorder, while � = 1 indicates that a

completely ordered forward (backward) sequence reverses to

a completely ordered backward (forward) sequence. There-

fore, only values up to � = 1
2 need to be considered.

According to the above explanation, if in a forward

sequence the �� 2 layer is in the A position, there will be two

transition paths to a � layer with A displacement, namely

A!
�

B!
�

A;

A!
�

C!
�

A:

The twin fault can be understood as a transition from a

forward (backward) sequence to a backward (forward)

sequence. If the sequence starts in a forward state, then the

probability of finding after an A (B, C) layer a B (C, A) layer

will be � ¼ 1� �, while the opposite will have probability �.

However, in this case, the occurrence of a twin fault reverses

the stacking order and therefore the transition path of a three-

layer sequence starting with a ‘forward’ A layer and ending

with an A layer will be

A!
�

B!
�

A;

A!
�

C!
�

A:

In the case of twin faulting a value � = 1 will denote a new

stacking arrangement, the perfect h.c.p. stacking sequence.
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This last fact introduces an important difference in the natures

of the � and � faulting: While the first does not result in a

change of stacking order, the latter does describe a reordering

(reconstructive) transition, and must be considered in its

whole range of values from 0 to 1.

Assuming a very low density of faulting, Warren (1969)

considered that the transition paths between three layers

could be taken separately for twin and deformation faults and

the result added up as exclusive events. When the planar

faulting density is larger than the values considered by

Warren, the adding up of the two transition trees from

deformation and twin faulting can not be done. Compared

with the approximation for low faulting probabilities, now the

possibility of the simultaneous occurrence of deformation and

twin faulting (��) must be considered. The whole tree of

transitions probabilities must be worked out (Gevers, 1954).

Two cases must then be considered, in one case the �� 2

layer is in a ‘forward’ sequence, while in the second case the

layer is in a ‘backward’ sequence. For example, the transition

paths for a three-layer sequence starting at B and ending at A

will be

B f!
��

C f !
��

Af;

B b
!
��

C b
�!
��þ��

Af;b;

!
��

C f
!
��

Af;

where the superscripts denote whether the layer is in a

‘forward’ (f) or in a ‘backward’ (b) sequence. The same

transition paths can be worked out for all possible combina-

tions of starting and ending layers. The resulting transition

probability tree is shown in Fig. 1. From this figure it can be

seen that the transition probability tree repeats at each level.

Thus, Fig. 1 is sufficient to represent the whole probabilistic

information of the stacking process.

3. Independent random faulting as a finite automaton
in the Hägg description

Starting from the Hägg code, one can give an equivalent

description of the probability tree of the faulting process in

terms of a finite-state automaton (FSA) or machine with an

underlying Markov or stochastic process (Varn & Canright,

2001). A finite automaton in general will be defined by the

automaton alphabet �, which are the symbols emitted by the

process, a set of states V and the transition probabilities

between the states T (Varn, 2001). The finite automaton can

be represented by a directed graph where each node repre-

sents a state and directed arcs between nodes denote the

transitions from one state to another upon emitting a symbol.

The starting state of an arc is called the source state of the

transition, while the ending state of the arc is termed the

destination state of the transition. Each arc will be labeled

with an sjp pair, where s is the emitted symbol and p the

probability of the transition. For a Hägg code the alphabet set

will be � ¼ f1; 0g representing the plus and minus sign,

respectively.
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Figure 1
Probability tree for both deformation (�) and twin (�) faulting. Circles
represent forward sequences and pentagons represent backward
sequences.



A deformation fault in the f.c.c. structure will, in the Hägg

code, reverse the sign at the position of the fault:

. . . A B C A j C A B C A . . .

. . . 1 1 1 0 j 1 1 1 1 1 . . .

For a forward (backward) sequence a 1 (0) symbol is emitted

with probability � (�), and a 0 (1) symbol otherwise.

The corresponding deformation-fault finite-state auto-

maton will be deterministic with two disconnected states

describing the forward or the backward sequence. In the graph

description of the automaton shown in Fig. 2(a), these two

states are denoted by the letter ‘f’ for the forward sequence,

and ‘b’ for the backward sequence. The state denoted by ‘s’ is

a ficticious starting state that chooses with equal probability an

‘f’ or a ‘b’ process. Once an ‘f’ or ‘b’ state is chosen, there is no

way the deformation fault can drive the system to the other

state. Each independent node is equivalent to the Bernoulli

biased-coin process (Hopcroft & Ulman, 1979).

For twin faulting, if the sequence starts in a forward state,

the Hägg code will consist of consecutive 1 symbols up to the

first twin fault and 0 symbols from there on up to the next twin

fault, where the sequence reverses again. The process is

repeated on average every 1/� layers. For a single twin event a

typical sequence will be

. . . A B C A j C B A C B . . .

. . . 1 1 1 0 j 0 0 0 0 0 . . .

The finite automaton describing the faulted sequence will still

have two recurrent states ‘f’ and ‘b’, but now the states are

linked together by the twinning event which occurs with

probability �. Fig. 2(b) shows the corresponding graph.

For combined deformation and twin faults, the Markov

process will be more complicated. The finite automaton will

again have the two ‘f’ and ‘b’ states. The transition between

these two recurrent states will again be given by the event of a

twin faulting; in this case, however, the twin faulting can occur

as an isolated event �� or as simultaneous event together with

a deformation fault ��. The complete automaton is depicted

in Fig. 2(c), where the starting state has been omitted for

simplicity and the forward state has been considered as the

starting point of the process. Contrary to the single deforma-

tion and twin process, the combined automaton is no longer

deterministic. This can be seen in the graph representation,

noticing that each recurrent state has more than one source

arc with the same symbol. The Markov transition matrix will

describe the probability that a given event will result in a

particular transition from one state to another state. For the

finite state process being analyzed, there are two type of

events and two states, and the corresponding transition

matrices will be given by

Tð0Þ ¼

 
�� ��
�� ��

!
ð1Þ

for events involving the emission of a 0 symbol and

Tð1Þ ¼

 
�� ��
�� ��

!
ð2Þ

for events involving the emission of a 1 symbol.

Identifying the ‘f’ state with 1 and the ‘b’ state with 2, each

entry T
ðsÞ
ij in a transition matrix represents the probability of

making a transition from the i state to the j state upon emitting

an s symbol. (In this case, for example, T
ð1Þ
12 is the probability of

making a transition from the ‘f’ state to the ‘b’ state while

emitting a 1 symbol.) From the above matrices the following

relation follows immediately:

Tð0Þ ¼ � � Tð1Þ � �; ð3Þ

where � is the reversion operator
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Figure 2
The Hägg random FSA with starting state ‘s’ and two recurrent states ‘f’
and ‘b’ for the forward and backward sequence. The symbol sjp
represents a process that emits a symbol s with probability p. (a) The
deformation faulting FSA is equivalent to a biased-coin or Bernoulli
process with probabilities � for one event and � for the complementary
event. The two recurrent states are disconnected and once the process
chooses between the ‘forward’ and the ‘backward’ state the system will
stay in that state indefinitely. (b) The twin faulting FSA where the
recurrent states are connected by the occurrence of twinning. (c) The
combined deformation and twin nondeterministic FSA. The double circle
in the forward state just signals that this is taken as the starting state. The
nondeterministic character reflects that the emitted symbol does not
determine unequivocally the next state of the process.



� ¼

�
0 1

1 0

�
: ð4Þ

The transition probability T between states without regard

of the actual symbol output will be given by

T ¼ Tð0Þ þ Tð1Þ ¼

�
� �
� �

�
: ð5Þ

The probability of being in an ‘f’ or a ‘b’ state will be

Pðf Þ ¼ PðbÞ ¼ 1
2, independent of the position in the sequence.

Consider now a given stacking arrangement for the whole

crystal and extract from the stacking sequence a particular

subsequence of length L number of layers given by

wL ¼ d1d2d3 . . . dL. It can be shown (Hopcroft & Ulman,

1979) that for the type of finite automaton considered, the

probability of finding a particular wL sequence will be given by

PðwL
Þ ¼ 1

2
~11T
� Tðd1Þ � Tðd2Þ � Tðd3Þ � . . . TðdLÞ � ~11; ð6Þ

where ~11T ¼ ð11Þ. (For example, the probability of finding in

the sequence a 0 symbol followed by a 1 symbol will be

Pð01Þ ¼ 1
2
~11T � Tð0Þ � Tð1Þ � ~11.)

Consider now a wL sequence starting with n1 consecutive 1

symbols, followed by n2 0 symbols, then n3 1 symbols and so

on, ending with nk 0 symbols, then

PðwLÞ ¼ 1
2
~11T � ðTð1ÞÞn1 � �

� �
� ðTð1ÞÞn2 � �
� �

. . . ðTð1ÞÞnk � �
� �

� ~11:

ð7Þ

Let ~wwL be the sequence resulting from the transposition of 1

and 0 symbols in the original wL sequence, then

Pð ~wwL
Þ ¼ 1

2
~11T
� � � ðTð1ÞÞn1 � �

� �
� ðTð1ÞÞ

n2 ��
� �

. . . ðTð1ÞÞnk � ~11:

ð8Þ

Noting that ~11T � � ¼ ~11T , equation (8) is identical to equa-

tion (7). Thus, PðwLÞ ¼ Pð ~wwLÞ [e.g. Pð01Þ ¼ Pð10Þ] and equa-

tion (7) is a general expression for the probability of finding a

subsequence wL of any kind in the stacking sequence. If dL is

the sequence made by L consecutive d symbols one can notice

that, as a particular case of equation (8), Pð1LÞ ¼ Pð0LÞ, as

should be expected, as both sequences represent the same

crystal stacking arrangement, namely the f.c.c. structure.

For any sequence of length L number of layers, the FSA of

Fig. 2 with �; � 6¼ 0 will give a probability of occurrence larger

than zero. This result has important implications for the use of

the random FSA as a comparison for other types of faulting

processes: The random faulting model can generate any

sequence of length L with probability larger than zero.

The number of possible sequences of length L accepted by

the FSA will be 2L. Any other faulting process will generate a

set of stacking arrangements, or sequence strings, which is a

subset of the set of allowed sequence strings of the random

FSA. How restrictive a particular model faulting is, in terms of

the allowed sequences, with respect to the random faulting

model can be quantified by exploring the subset strings

spanned by the particular faulting model.

4. Independent random faulting as a finite automaton
in the HK description

In the Hägg notation, a twin fault results in a flip in the value

of the sites starting from the position of the fault up to the end

of the stacking sequence. The twin faulting viewed as an

operator acting over the Hägg code has an infinite range. In

the HK notation, on the other hand, a twin fault in a perfect

f.c.c. structure just flips the value of one site in the code:

A B C A B C A j C B A C B

k k k k k k h j k k k k k

whereas a deformation fault changes the value at two neigh-

boring sites:

A B C A B C A j C A B C A

k k k k k k h j h k k k k

Hence, both types of faulting are local operators in the HK

coding. An FSA can also be constructed for the HK repre-

sentation of the stacking arrangement and it is shown in Fig. 3.

The resulting stochastic machine is also nondeterministic. In

the case of this FSA, the U and W states can not be identified

with the forward and backward sequence; they are computa-

tional states with no physical meaning. The HK random FSA

is similar to the Hägg stochastic machine but with a relabelling

of the directed arcs. The transition matrices in this case are

TðkÞ ¼

�
�� ��
�� ��

�
ð9Þ

TðhÞ ¼

�
�� ��
�� ��

�
ð10Þ

and the relation between TðhÞ and TðkÞ follows:

TðhÞ ¼ � � TðkÞ: ð11Þ

The state transition matrix is

T ¼

�
� �
� �

�
: ð12Þ

The probability of finding the FSA in the U state is PðUÞ ¼ �
and in the W state is PðWÞ ¼ �, which indicates that the states

U and W are related with the occurrence of deformation

faulting. From the graph of the FSA shown in Fig. 3 one finds

PðhÞ ¼ PðUÞð��þ ��Þ þ PðWÞð��þ ��Þ

¼ �þ 2��ð1� 2�Þ; ð13Þ
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Figure 3
The nondeterministic HK random FSA with recurrent states ‘U’ and ‘W’.
The notation is the same as in Fig. 2.



giving the probability of finding a close-packed hexagonal

environment in the stack. The fraction of hexagonal sites

increases linearly with � over its whole range of values [0, 1]

and quadratically with � over the interval [0, 1
2]. The prob-

ability of finding a cubic environment follows immediately

from the relation PðhÞ þ PðkÞ ¼ 1. The expression for PðhÞ

and PðkÞ relates the treatment of planar disorder, given by

independent deformation and twin faults, with the probability

of finding a hexagonal or cubic environment in the stacking

arrangement, which are the parameters used in the early

works of Jagodzinski.

Using a similar expression to equation (6), the probability

of finding a k domain of length L in the stacking sequence will

be

PðkLÞ ¼ ð� �Þ � ½TðkÞ�L � ~11: ð14Þ

If t0 and t1 are the eigenvalues of the TðkÞ matrix, and

X ¼ ð ~x0x0 ~x1x1Þ is the matrix of the corresponding eigenvectors,

then

½TðkÞ�L � XT
¼ XT

�

�
t0 0

0 t1

�L

; ð15Þ

where XT is the transpose matrix of X. Using equation (15) to

find an explicit expression for ½TðkÞ�L and substituting into

equation (14) leads to

PðkLÞ ¼
1

2p

�þ p

2

� �L

ðp� qÞ þ
�� p

2

� �L

ðpþ qÞ

( )
; ð16Þ

where

p2 ¼ 1þ �2 � 2PðhÞ;
q ¼ 2PðhÞ � ð1þ �Þ:

The limiting values of the PðkLÞ function are given by

PðkL
Þ ¼

2�L � ¼ 1
2

2�L � ¼ 1
2

�
L

� ¼ 0; 1

�Lþ1 þ �Lþ1 � ¼ 0:

8>><
>>:

Figs. 4(a),(b) show PðkLÞ as a function of L in a semiloga-

rithmic plot for different values of � and �. Two characteristic

lengths of the exponential decaying behavior of PðkLÞ can be

obtained from equation (16):

�k1
¼ �

1

log½ð�� pÞ=2�
; ð17Þ

�k2
¼ �

1

log½ð�þ pÞ=2�
: ð18Þ

Of the two lengths, �k2
is the one determining the behavior of

PðkLÞ and Fig. 4(c) shows �k2
as a function of � for different �

values. A similar analysis can be done for the h-domain blocks.

In this case

PðhLÞ ¼
1

2r

�þ r

2

� �L

ðr� kÞ þ
�� r

2

� �L

ðrþ kÞ

( )
; ð19Þ

where
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Figure 4
The probability of finding a k domain as a function of its size L number of
layers for different � values. (a) � ¼ 0. (b) � ¼ 0:3. (c) The characteristic
length of the decaying behavior of PðkLÞ as a function of � values for
different � probabilities.



r2
¼ 1� 2�þ 2�2

� p2; k ¼ �� 2PðhÞ:

The limiting values for the PðhLÞ function are

PðhL
Þ ¼

2�L � ¼ 1
2

2�L � ¼ 1
2

�L � ¼ 0; 1

�Lþ1 þ �Lþ1 � ¼ 1:

8>><
>>:

The exponential decaying behavior of PðhLÞ (Fig. 5a,b) allows

the definition of two characteristic lengths:

�h1
¼ �

1

log½ð�� rÞ=2�
; ð20Þ

�h2
¼ �

1

log½ð�þ rÞ=2�
: ð21Þ

The dominant characteristic length �h2
is shown as a function

of � for different � values in Fig. 5(c). Equations (16) and (19)

can be used to calculate the average block size for the k and h

domains:

hLih ¼
�þ 2��ð1� 2�Þ½��ð1� 2�Þ þ 2�

½��ð1� 2�Þ � ��2
; ð22Þ

hLik ¼
�þ 2��ð1� 2�Þ½��ð1� 2�Þ � 2�

½��ð1� 2�Þ þ ��2
: ð23Þ

5. The probability correlation function

An expression for P0ð�Þ will now be derived. P0ð�Þ is the

probability of finding two layers, � layers apart and of the

same type (e.g. A . . . A, B . . . B, C . . . C), Pfð�Þ [Pbð�Þ] is the

probability when the layers are of the type A . . . B, B . . . C,

C . . . A (A . . . C, B . . . A, C . . . B). The Pið�Þ functions are

essential in describing the effect of faulting on the diffraction

pattern (Warren, 1969).

Returning to the Hägg random FSA of Fig. 2, the following

equations can be derived:

P0ð�Þ ¼ 2Pð01ÞP0ð�� 2Þ þ 2Pð11Þ½Pfð�� 2Þ þ Pbð�� 2Þ�;

ð24Þ

P0ð�� 1Þ ¼ 1
2½Pbð�� 2Þ þ Pfð�� 2Þ� ð25Þ;

where use has been made of PðfÞ ¼ PðbÞ ¼ 1
2. Pð01Þ can be

calculated from equation (6). 2Pð01Þ is the probability of

finding a hexagonal environment in the stack given by equa-

tion (13). The following boundary conditions pertaining to

equations (24) and (25) (see Warren, 1969) must be added:

P0ð0Þ ¼ 1;

P0ð1Þ ¼ 0:

The first condition is just the trivial case of considering the

same layer two times, the second condition is a result of the

close-packed restriction: two consecutive layers of the same

type can not occur in the stacking sequence. The solution to

equations (24) and (25) can be found by proposing
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Figure 5
The probability of finding an h domain as a function of its size L number
of layers for different � values. (a) � = 0. (b) � = 0.3 (the � = 0.31 and 0.41
labels have been omitted for reasons of space). (c) The characteristic
length of the decaying behavior of PðhLÞ as a function of � values for
different � probabilities.



P0ð�Þ ¼ aþ bx�: ð26Þ

It is then found that

ð3a� 1Þ½1� �þ �2
þ �ð2�� 2�2

� 1Þ�

þ bx��2½ð1� 2�Þð1þ 3�2 � 3�Þ þ ð1� �Þxþ x2�

¼ 0:

This last equation has to be satisfied independently of the

values of �, � and �, therefore each term alone has to be

strictly zero. From this condition it follows that

3a� 1 ¼ 0;

ð1� 2�Þð1þ 3�2 � 3�Þ þ ð1� �Þxþ x2 ¼ 0:

From the first equation

a ¼ 1
3 ð27Þ

and from the second quadratic equation

x ¼ 1
2½�ð1=�Þ � is�;

where

s2
¼ ð3� 12�� 6�Þ þ ð12�2

� �2
Þ þ 24���: ð28Þ

Using the boundary conditions results in

P0ð�Þ ¼
1
3

�
1þ 1þ

i�

s

� �
�ð1� �Þ þ is

2

� ��

þ 1�
i�

s

� �
�ð1� �Þ � is

2

� ���
: ð29Þ

In the classic treatment of Warren, only the first term on the

right-hand of equation (28) is considered. Velterop et al.

(2000) and Estevez-Rams, Leoni et al. (2003) took into

account the quadratic terms in � and � but missed the mixed

factor 24���, which gives a further quadratic contribution to

the s value. Equation (28) is valid for the whole range of values

for � and �. The additional third term in equation (28)

accounts for the simultaneous occurrence of deformation and

twin faults at higher faulting densities.

The expression for P0ð�Þ given by equation (29) can be

described as an oscillating damped function.

In Tiwary & Pandey (2007a) an equivalent expression

[equation (15) in their article] to equation (29) is made equal

to a single exponential decaying function [equation (16) in

their article], thus defining a single characteristic length for the

decaying behavior. Care must be taken: to make a sum of two

exponentials equal to a single exponential is in general not

mathematically justified. We did not manage to reduce the

sum of two exponentials to a single exponential. The particular

cases treated by Tiwary & Pandey (2007a), though, are valid

and similar to the results presented here.

Fig. 6 is a density plot of s2 versus �; � for the three

approximations. The linear Warren term strongly under-

estimates the region where s2 > 0 and does not show the

expected symmetric behavior of the system at � ¼ 1
2. Velterop

quadratic terms already correct the s2 term showing the

correct symmetry at � ¼ 1
2 and improve the estimate of the

region where s2 > 0, especially at lower values of �; �.
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Figure 6
Density plot of s2 for (a) the approximation according to Warren (1969),
(b) the approximation according to Velterop et al. (2000) and (c)
considering all terms.



Fig. 7 shows the error curves between the exact s2 expres-

sion given by equation (28) and the Warren (a) and Velterop

(b) approximations. The error curves have been plotted only

for values where s2 > 0, as this is the region where comparison

makes sense. As can be seen, the Warren approach leads to

gross errors even larger than 100% for the larger part of the

probability region. Even for � = 0, the error is above 50% for

� values slightly larger than 0.2 (Fig. 7a). The Velterop

approach, where quadratic terms are taken into account, is an

improvement over the Warren approach especially when one

type of defect has a small probability. This behavior is

expected as the mixed term in equation (28) will be nearly

zero. However, for a mixed occurrence of defects, the error

between the Velterop approach and the true s2 value grows

rapidly and for � ¼ �> 0:15 the error is already above 50%

(Fig. 7b).

The solution given by equation (29) is valid when s2 6¼ 0. To

find a solution for s2 ¼ 0 use still has to be made of equation

(28) to derive a relation between � and � and deduce a new

difference equation,

� ð3� �Þ2 þ 12P0ð�Þ þ 12ð1� �ÞP0ð�� 1Þ

þ 3ð1� �Þ2P0ð�� 2Þ ¼ 0:

A trial solution of the form

P0ð�Þ ¼ aþ bZ�
þ c�Z�

can be proposed, and using the boundary conditions the

following results:

P0ð�Þ ¼
1
3 1þ 2ð�1Þ�

1� �

2

� ��

1þ
�

1� �

� �
�

� �( )
: ð30Þ

5.1. Case I: s2 > 0

Following the approach of Warren (1969),

P0ð�Þ ¼
2
3ð�1Þ�Z� cos ’�þ ð�=sÞ sin ’�½ � þ 1

3; ð31Þ

with Z being a positive number,

Z ¼
½ð1� �Þ2 þ s2�

1=2

2
; ð32Þ

and

tan ’ ¼
s

1� �
: ð33Þ

Figs. 8(a)–(d) show the P0 function for different values of �
and �.

In equation (31) the Z� term is a decreasing function of �
(Z< 1 for all allowed values of � and �), while the remaining

term corresponds to an oscillating function: equation (31) can

thus be considered as a damped oscillating function.

The decaying term allows the definition of a characteristic

length scale �c of the system:

�c ¼ �
1

log Z
: ð34Þ

The occurrence of any kind of planar disorder results in the

loss of correlation in the stacking arrangement: as a result of

random events in the stacking sequence, the stack of layers

loses its long-range ‘memory’. The loss of long-range memory

may be understood in the sense that �c is related to the length

of the system when from any position in the stacking

arrangement the � value is sufficiently large that the type of

layer that occurs can not be predicted with a probability larger

than 1
3 (Shrestha, 1996; Estevez-Rams, Aragon-Fernandez et

al., 2003).

Considering only one kind of defect, equation (34) reduces

to

Acta Cryst. (2008). A64, 537–548 E. Estevez-Rams et al. � Stacking and twin faults 545

research papers

Figure 7
Relative error between the true s2 function and the approximations due
to (a) Warren (1969) and (b) Velterop et al. (2000). Any combination of
defect probability will give an error above the nearest contour curve to
the left and below the nearest contour curve to the right.



�c ¼ �
2

log½1� 3�ð1� �Þ�
ð35Þ

for deformation faults and to

�c ¼ �
2

logð1� 2�Þ
ð36Þ

for twin faulting.

Equations (34), (35) and (36) are in accordance with similar

results reported earlier (Estevez-Rams, Leoni et al., 2003;

Tiwary & Pandey, 2007a,b). The argument of the logarithmic

function for the case of deformation faults grows faster than

the same argument for twinning. Up to a common value of 1
3,

deformation faults will result in a smaller value of �c and

therefore larger disorder than twin faulting. For larger values

of faulting, twin faults will result in larger disorder and �c will

drop abruptly to zero for � = 1
2. A value of � = 1

2 will give

�c ¼
1
4.

The other term in (31),

ð�1Þ�½cos ’�þ ð�=sÞ sin ’��; ð37Þ

describes an oscillating periodic function of �. The period of

this term will be given by the argument ’. The interval of valid

’ ranges from, including, zero to, excluding, �=3. If ’ happens

to be a rational multiple of �, r�=q, then the periodicity �p of

the oscillating function will be q if rþ q is even and 2q

otherwise. In all other cases, no integer value of � will define a

period. For � ¼ � ¼ 0 the oscillation function has a period of

three, corresponding to the perfect f.c.c. case. Thus, s2 > 0

corresponds to the average f.c.c. disordered stacking

arrangement as reported earlier by Tiwary & Pandey (2007a).

Combining equations (32), (33) and (34), the following

expression can be obtained,

� ¼ 1� 2 expð�1=�cÞ cos ’; ð38Þ

which in turn allows the calculation of � from the parameters

�c and ’. Knowing �, then � can be calculated from �c using

equations (34) and (32).

As a correlation length and ’ value can always be defined in

any stacking disorder model, equations (38), (34) and (32)

formally allow an � and a � value to be found for any stacking

disorder, allowing comparison between different types of

faulting.

5.2. Case II: s2 = 0

According to equation (30)

Zs¼0 ¼ �=2; ð39Þ

which allows the definition of a correlation length

�cs¼0
¼ �

1

log Zs¼0

ð40Þ
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Figure 8
P0ð�Þ as a function of � for (a) � ¼ 0, � ¼ 0; (b) � ¼ 0:01, � ¼ 0; (c) � ¼ 0, � ¼ 0:01; (d) � ¼ 0:01, � ¼ 0:01; (e) � ¼ 0:01, � ¼ 0:90; (f) � ¼ 0, � ¼ 1. P0

is defined for integer values of �; the lines are just a visual aid.



and

P0 ¼
1
3 1þ 2ð�1Þ� 1þ

�

1� �

� �� �
expð��=�cs¼0

Þ

� �
: ð41Þ

The P0 function given by equation (41) has a different nature

to that of (31). Even if an exponential decaying term with

characteristic length �cs¼0
can be indicated, now the decaying

function is multiplied by a linear function of � with a positive

slope. The maximum value that can be attained by �cs¼0
is 1.44,

indicating a very disordered stacking arrangement state, which

is clearly seen in Fig. 9. The behavior of P0 does not change

significantly with � over all its range of allowed values. The

nature of the disorder is the same for all values of � and � such

that s2 ¼ 0.

The oscillating term is given by ð�1Þ�, which has a peri-

odicity of two for any value s2 ¼ 0; this behavior is completely

different to that observed when s2 > 0, where the periodicity

changed with the faulting probability. Also, in all cases, the

periodicity is already destroyed by the coherence length,

which is smaller than two.

5.3. Case III: s2 < 0

In this case

P� ¼
1
3ð�1Þ� ð1þ �=s0ÞZ�

1 þ ð1� �=s0ÞZ�
2

	 

; ð42Þ

where s0 ¼ ð�s2Þ
1=2 and

Z1 ¼
�þ s0

2
;

Z2 ¼
�� s0

2
:

Figs. 8(e), (f) show the P0 function for different values of � and

�. Both terms Z1 and Z2 have absolute values less than one

and they determine the damping term. Z1 is always a positive

number, while Z2 can take negative values for increasing � and

�. In both cases the absolute values of Z1 and Z2 tend to one as

�! 1
2 and �! 1. The term between square brackets is always

positive.

The system shows two characteristic length scales,

�c1
¼ �

1

log Z1

�c2
¼ �

1

log jZ2j
:

jZ2j>Z1 and therefore �c1
>�c2

.

The oscillating term is similar to the one found in the s2 ¼ 0

case. The oscillating term has a periodicity of two. Once the

system has crossed the border from positive to negative s2, the

probability correlation function does not change the behavior

of its oscillating term. Thus, s2 < 0 corresponds to the average

h.c.p. disordered stacking arrangement also as reported earlier

by Tiwary & Pandey (2007a).

6. Conclusion

In this paper the independent random model of faulting for

close-packed f.c.c. and h.c.p. structures has been analyzed over

the whole range of deformation and twin fault probabilities.

The defect mechanisms can be described as a probability tree

or, equivalently, as a nondeterministic finite state automaton.

It has been shown that in earlier treatments by Warren (1969)

and Velterop et al. (2000) approximations neglect important

terms in the layer correlation function. The FSA description

allows the derivation of a closed expression for the probability

of occurrence of h.c.p. or f.c.c. blocks of length L number of

layers within the complete stacking arrangement. Closed

mathematical expressions as a function of � and � were also

found for the average f.c.c. and h.c.p. block length. The general

equation governing the layer pair correlation function P0ð�Þ
was found. For any defect density, the P0 functions can be

described as an oscillating term multiplied by a decaying term.

For low faulting probability the oscillating term changes its

periodicity towards larger potential polytypes with increasing

defect density. This periodicity is destroyed by the prevailing

disorder, which can be described by a corresponding char-

acteristic length understood as the ‘memory’ length of the

system. Above a certain boundary curve given by � and �, the

underlying periodicity collapses to two layers, signaling the

transition to a heavily disordered h.c.p. structure.

The approach used in this paper can be extended to the

analysis of other types of independent or even correlated

defects described by a finite number of occurrence prob-

abilities.
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